Determinant preserving transformations on symmetric matrix spaces
نویسندگان
چکیده
منابع مشابه
Determinant preserving transformations on symmetric matrix spaces
Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations φ on the space which satisfy one of the following conditions: 1. det(A+ λB) = det(φ(A) + λφ(B)) for all A,B ∈ Sn(F) and λ ∈ F; 2. φ is surjective and det(A+ λB) = det(φ(A) + λφ(B)) for all A,B and two specific λ; 3. φ is additive and preserv...
متن کاملEla Determinant Preserving Transformations on Symmetric Matrix Spaces∗
Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations φ on the space which satisfy one of the following conditions: 1. det(A+ λB) = det(φ(A) + λφ(B)) for all A,B ∈ Sn(F) and λ ∈ F; 2. φ is surjective and det(A+ λB) = det(φ(A) + λφ(B)) for all A,B and two specific λ; 3. φ is additive and preserv...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملNorm Preserving Extensions of Linear Transformations on Hilbert Spaces
Introduction. Let 77 be a Hubert space and let D be a closed proper subspace of 77. Let 70 be a linear contraction on D to 77. The problem of characterizing the contractions on all of 77 which extend J0 is directly related to the extension problems for unbounded transformations posed and treated by M. G. Krein [2] and R. S. Phillips [3]. In §1 of this paper we establish the following solution o...
متن کاملSome Sequence Spaces and Their Matrix Transformations
The most general linear operator to transform from new sequence space into another sequence space is actually given by an infinite matrix. In the present paper we represent some sequence spaces and give the characterization of (S (p), ) and (S (p), ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2004
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1133